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Abstract
We present an algorithm of reduced computational cost

which is able to estimate kinetic model parameters directly
from dynamic ECT sinograms. The algorithm exploits the
extreme degree of parameter redundancy inherent in linear
combinations of the exponential functions which represent the
modes of first order compartmental systems. The singular
value decomposition is employed to find a small set of
orthogonal functions, the linear combinations of which are able
to accurately represent all modes within the physiologically
anticipated range in a given study. The reduced-dimension
basis is formed as the convolution of this orthogonal set with a
measured input function. The Moore-Penrose pseudoinverse is
used to find coefficients of this basis. Algorithm performance
is evaluated at realistic count rates using MCAT phantom and
clinical 99Tc-teboroxime myocardial study data. Recovered
tissue responses compare favorably with those obtained using
more computationally intensive methods.

I. INTRODUCTION

Most contemporary techniques for the reconstruction of
emission computed tomography (ECT) images assume that
the projection data are obtained from a radionuclide source
distribution which does not vary in time. In most functional
studies which involve the use of a rotating camera which
cannot acquire projections over360Æ simultaneously, this is
a poor assumption. There exists, consequently, a need for
algorithms capable of solving the dynamic ECT reconstruction
problem, which involves the estimation not only of the
underlying functional anatomic source geometry, but also of
the pharmacokinetics of injected radiotracer materials.

Reutter et al. have demonstrated an algorithm capable of
fitting single compartment models directly to the projections
of both phantom and clinical myocardial studies [1, 2]. A
stabilized Newton-Raphson optimization algorithm is used to
solve the non-linear weighted least squares problem whose
solution yields the kinetic parameters directly from the
acquired projection data. While this method is effective in
providing the desired estimates, the amount of computation
required is large for studies involving many dynamic regions.
The objective of the approach presented here is to reduce
these requirements through dimensionality reduction and
linearization of the problem.

1This work was supported by US Department of Health and Human
Services grants HL-07367, R01-HL50663 and P01-HL25840, by US
Department of Energy contract DE-AC03-76SF00098 and by the
South African National Research Foundation.

Linear algorithms for the estimation of the kinetic
parameters in dynamic ECT, which employ a preselected
time-activity basis of exponential functions, have been
presented in the past [3, 4]. Preselection of the kinetic basis
converts a problem which is non-linear in the exponential rate
parameters into a much simpler linear problem. Basis sets
used by these algorithms are typically composed of families
of decaying real exponential functions having rate constants
selected so as to span the range of physiologically feasible
modes expected in the data. For example, Cunningham et al.
utilized a set ofM = 100 sampled exponential functions:

f ~m[l] = e�k ~m l�t; l = 0; 1; 2; : : : ; L� 1; (1)

where l is a discrete time index andk ~m 2 [10�4; 1] s�1.
The k ~m were spaced logarithmically on this interval, whose
bounds were selected for the application of exponential spectral
analysis to cerebral positron emission tomography (PET)
studies using three different tracer agents.

As we have shown previously, an orthogonal basis set of 6
functions (sampled regularly at32 points in t 2 [0; 300 s] ),
is able to approximate any one of thesef ~m with a maximum
deviation of well under 1% [5]. The large dimensionality
reduction possible illustrates the well-known high level of
redundancy that exists among families of closely parameterized
real decaying exponentials [6, 7]. Here, we exploit this
redundancy to achieve significant computational savings over
previous algorithms for exponential spectral analysis.

II. PROBLEM FORMULATION

We begin by assuming that the underlying source
distribution
(x) has been segmented into several regions of
interest (ROI’s)
n(x); n = 1; 2; : : : ; N .

For the application of the algorithm to myocardial studies
during which both wash-in and wash-out of the tracer occur,
such as those involving99Tc-teboroxime, we assume that
tracer kinetics are governed by a single compartment model.
To cope with possible region heterogeneity [8], we incorporate
additional flexibility in allowing the time-activity curve (TAC)
of each ROI to be composed of linear combinations of the
responses of several such models:

In(t) =

~MX
~m=1

k ~mn
21 i(t) � e�k

~m

12
t; (2)

wherei(t) is the measured blood input function, and the ‘�’
operator denotes convolution.
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As in [5], we form the(L � ~M) matrix X whose ~mth
column isf ~m[l] as defined in (1), and invoke the singular value
decomposition (SVD) to find orthogonal basis vectors for the
range ofX. These are the left singular (column) vectorsu ~m of
the SVD ofX:

X = VS ~UT ; ~U =
�
u1 u2 � � � u ~M

�
(3)

whereV is the matrix of right singular vectors, andS is the
diagonal matrix of singular values. We associate the discrete
time indexl with each row ofU. Depending on the degree of
accuracy required in the sampled representation of theIn(t), we
utilize only the firstM � ~M of ~U such that:

U =
�
u1 u2 � � � uM

�
: (4)

Typically, M � 4 is sufficient for the myocardial imaging
applications we have studied.

We then form the matrixC from the columns ofU
convolved with the sampled blood input functioni[l], which we
assume has either been measured or estimated:

C0 =
�
c1 c2 � � � cM

�
: (5)

wherecm = um � i[ l ]; l = 0; 1; : : : ; L� 1.

With the kinetic model formalized, we wish to estimate
the coefficients�mn of thecm for all regions, which form the
approximated TAC’s as:

În[ l ] =

MX
m=1

�̂mn cm[ l ]; l = 0; 1; : : : ; L� 1 ; (6)

whereL = RP , the total number of angular projections, given
R camera rotations withP angular projections per rotation, and
Q bins per projection.

III. PROBLEM SOLUTION

We begin by lexicographically stacking the projections of
theRP �Q measured sinogram~Y into the vector~y. Similarly
theP � Q sinogramY0

n for each of theN segmented regions
fn(x) are stacked into the vectorsy0n. We then define the
RPQ � M matricesGn which consist ofR � M replicates
of y0

n
. The geometric weighting matrix for the activity

contributions of each region is then given by:

G =
�
G1 G2 � � � GN

�
: (7)

The second matrix we will describe consists of blocks
containing the convolved basis functionscm. For each time
samplel, we form thePQ�M matrices

Cl =

2
664

u1[l] u2[l] � � � uM [l]
u1[l] u2[l] � � � uM [l]

...
...

...
...

u1[l] u2[l] � � � uM [l]

3
775 (8)

from which theRPQ�NM basis weighting matrix

C =

2
664

C0 C0 � � � C0

C1 C1 � � � C1

...
...

...
...

CL�1 CL�1 � � � CL�1

3
775 (9)

is composed.

The vector�̂ containing the coefficient estimates�mn is
easily obtained via solution of the linear system:

~y = F �̂ = (G �C) �̂ (10)

where the operator ‘� ’ denotes element-by-element
multiplication.

Equation 10 may then be solved by the method of least
squares for the kinetic parameters

�̂ = (FTF)�1FT ~y; (11)

when (FTF) is invertible. When this is not the case, the
SVD may be used to find the pseudoinverse. This is unlikely,
since (10) is typically highly overdetermined, owing to the
fact that the number of projection measurements acquired in
a typical ECT study far exceed the number of parameters to
be estimated. We henceforth refer to the algorithm developed
above as the ‘convolved-orthogonal basis reconstruction
algorithm’ (COBRA).

IV. A LGORITHM EVALUATION

The algorithm is first applied to a single slice of a dynamic
realistic mathematical cardiac torso (MCAT) phantom [9], and
then to a99Tc-teboroxime myocardial patient study.

A. Phantom study
The 3D MCAT phantom is shown in Figure 1. This phantom

models not only the myocardium, but also the myocardial blood
pool, the background activity in the body, and the liver. The
projections of a single slice transverse to the long axis of the
body were chosen for this evaluation.

The simulated dataset was acquired over 15 rotations of a
single-headed camera, taking 120 regularly spaced angular
measurements per rotation, of 64 projection bins each. The
total imaging period was 15 minutes. While attenuation was
modeled, non-ideal system response and scatter were not.

A total of 6 regions, having the TAC’s illustrated in Figure
4, were included in the phantom data.

The orthogonal basis functions were calculated through the
application of the SVD to a matrix of100 sampled exponential
functions parameterized by rate constants logarithmically
spaced in the interval[5 � 10�4; 2]. This interval includes
the true range ofk12 2 [0:002; :6] from which the TAC’s are
derived. In practice, of course, the true range is unknown,
so the choice of interval fork12 should ensure that all
physiologically feasible modes are accommodated. The
numberM of left singular vectorsum retained after application
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Figure 1: 3D MCAT emission phantom, of which a single slice
through the myocardium transverse to the long axis of the body is
taken as 2D phantom for these studies. The liver (region 6) is shown
to the left of the heart in this illustration. We see that the myocardium
contains two defects (darker regions 4 and 5) and normal region 3,
which is rendered non-contiguous by the defects. Region 2 is the
myocardial blood pool, while region 1, represents the background
activity in the torso.

of the SVD is selected as the minimum number needed to
approximate all of the exponential functionsfm[l] to within
1% peak deviation, using the reduced-dimension basis. An
additional basis functionuM+1[l] = Æ[l] is included to allow
for explicit modeling of the blood pool within the imaged
distribution, whereÆ[l] is the discrete-time impulse. The basis
functions employed appear in Figure 2
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Figure 2: Orthogonal basis functions employed in phantom study.
These are the first 4 left singular vectorsum ofU.

The algorithm was tested overI = 100 and I = 1000
sinogram realizations. The mean of all estimates�̂i was
compared to the true� (as recovered from noise-free projection
data) to evaluate bias in the estimates. Owing to the parameter
redundancy inherent in functions involving exponential sums,
we do not attempt to recover this form of parameterization for
the recovered TAC’s. Rather, we use the following metric to
express the deviation between the recoveredf̂n[l] and the true
TAC’s:

Mdev,
1

N

NX
n=1

r
1

L

PL

l=1

�
fn[l]� f̂n[l]

�2
max l2f0;1;���; L�1g

�
fn[l]

� � 100: (12)

For those parameters which are found to be unbiased,

the variance of each estimate is subsequently compared to
its Cramér-Rao lower bound. When the contribution of a
specific basis function towards a TAC is negligible, even
negligible estimation errors produce large parameter biases.
Consequently, it is appropriate to perform analysis of parameter
bias and variance only on those coefficients which are large
enough so as to introduce significant power into the recovered
TAC. To this end, we introduce the metric:

Mmn
pow =



�mncm


2

PM

m=1 �mncm


2 � 100; (13)

wherecm is themth convolved basis function and


 � 

 denotes

the Euclidean norm.

B. Patient study
To establish whether the COBRA algorithm is able to

produce useful estimates of regional TAC’s in a clinical setting,
we apply the algorithm to a single transverse slice from a
99Tc-teboroxime myocardial patient study. While the true
regional kinetics for this dataset are unknown, we are able to
compare our results with those obtained previously through
application to the same data of the methods of Formiconi
[10] and the direct single compartment fit to projection data
(DSCFP) algorithm of Reutter et al. [2].

The method of data acquisition is described in [2]. Briefly,
a three detector SPECT study was conducted, having a duration
of 15 minutes, during which a full (360Æ) set of 120 angular
projections was acquired every 10 s. An attenuation map was
constructed using a transmission source, to allow for attenuation
compensation.

The imaged distribution was delineated into the regions:
left ventricular myocardium, blood pool, liver and background
tissue using the automated volume of interest specification
algorithm described in [2]. The 2D slice illustrated in Figure 3
was selected for the purpose of algorithm evaluation.

Figure 3: Specific 2D slice through imaged torso, the projections
of which are selected for algorithm evaluation. The contours shown
delineate tissue regions.

One of the primary motivations for the development of
algorithms able to reconstruct imaged distributions directly
from projections is the ability of such algorithms to base
estimates on projection data which are temporally inconsistent.
In order to artificially introduce projection inconsistency,
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we significantly decrease the time resolution of the study by
summing each set of 4 sequentially acquired sinograms. This
yields a set of 22 sinograms sampled at 40 s intervals. Since
the activity of regions within the distribution changes by more
than 100% during intervals of this length, a large degree of
inconsistency is present in this reduced data set.

V. EXPERIMENTAL RESULTS

A. Phantom study
Figure 4 compares the original regional TAC’s and the mean

TAC’s recovered by the COBRA algorithm at a total sinogram
count value of2:5� 105.

Note that we have only processed data from the first 5
camera rotations, as inclusion of the data obtained during the
final 10 revolutions did not materially affect the estimates
obtained. This behaviour stems from the highly overdetermined
nature of the linear system solved by the algorithm.
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Figure 4: At2:5 � 105 counts, the mean TAC’s recovered over 1000
noise realizations (–) fit the true (phantom) data closely.

Table 1 contains the results of three tests, each of 100 noise
realizations at respective count totals per slice of5� 105; 2:5�
105 and1� 105.

Test Counts Flops RMS error (Mdev%)
TAC 1 TAC 2 TAC 3 TAC 4 TAC 5 TAC 6

1 5.0e+05 1.1e+08 0:18 0:58 0:75 6:98 4:35 0:27

2 2.5e+05 1.1e+08 0:17 0:87 1:11 8:88 5:58 0:51

3 1.0e+05 1.1e+08 0:19 1:09 1:54 14:69 8:44 0:46

Table 1
Results of 100 noise realization tests of the parameter estimation

algorithm.

Most of the errors were well below5%, even at the lowest
total counts value of105 tested. TAC 4, which contains the least
power of all the TAC’s is also the most poorly recovered, with
a worst case error ofMdev = 14:7%.

We see from Table 2, that absolute bias is below1% for all
parameters for whichMpow is above4%. Parameter 4 of TAC 4
(�44) is the most poorly estimated of all parameters, with a bias
of 124%. The convolved basis function scaled by this parameter
contains less than0:1% of the total power within TAC 4, so this
bias is not a significant source of error.

TAC 1 TAC 2 TAC 3 TAC 4 TAC 5 TAC 6

% power in subTAC 1 42:3 42:2 95:2 86:0 73:4 104:1

% bias in coefficient 1 �0:24 �0:35 �0:61 �1:74 �1:40 �0:57

Var. as % of CRLB. 115:56 118:05 113:46 120:49 107:59 117:03

% power in subTAC 2 55:6 55:7 2:7 10:7 21:5 0:0

% bias in coefficient 2 �0:66 �0:52 �2:66 �0:54 �0:77 �2:64

Var. as % of CRLB. 115:30 112:37 123:88 118:42

% power in subTAC 3 77:9 77:4 0:7 2:5 3:0 0:4

% bias in coefficient 3 �0:48 �0:77 0:13 0:67 10:73 �0:98

Var. as % of CRLB. 114:05 120:49 111:52 132:11 120:37

% power in subTAC 4 2:6 2:5 0:0 0:0 0:1 0:0

% bias in coefficient 4 �0:21 �1:24 12:54 124:32 �40:58 �5:26

Var. as % of CRLB. 114:51 130:09

Table 2
Quantities used in analysis of parameter bias and variance. These

statistics were obtained over 1000 noise realizations, using a set of4
basis functionsum which were all mutually orthogonal before
convolution with the blood input function. The 1000 measured

sinograms contained2:5 � 105 counts each over 15 revolutions. Only
the first 5 revolutions were used to produce these results. The

Cramér-Rao lower bound is abbreviated as ‘CRLB’.

We see also from Table 2 that variances for the estimates
for those coefficients which significantly weight the TAC’s are
reasonably close to the Cram´er-Rao lower bound, and do not
exceed it by more than30%. Analysis of parameter variance
is performed only for those parameters exhibiting less than2%
absolute bias. The COBRA algorithm executes in under 15 s on
a Pentium II 450 MHz processor for the tests presented here.

B. Patient study
Figure 5 compares TAC’s derived by applying Formiconi’s

method to those obtained using the COBRA algorithm
presented here. Corresponding TAC’s appear similar, and
the decreased time resolution and greater smoothness of
the COBRA TAC’s is evident. Quantitatively, we have
Mdev = 9:4%.
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Figure 5: Comparison of TAC’s recovered via Formiconi’s method
and using the reduced-dimension basis estimator (dashed lines).

In Figure 6, TAC’s derived through application of the
DSCFP due to Reutter et al. are compared to the COBRA
TAC’s. Since the latter method was applied towards
the estimation of myocardial and liver activities alone,
while Formiconi’s method was employed to determine the
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background and blood pool TAC’s, only the two former
responses are shown. Again, the two sets of curves compare
favorably, withMdev = 7:3%.
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Figure 6: Comparison of TAC’s recovered via the direct fit of a single
compartment model to projection data (method of Reutter et al.) and
the COBRA method. Blood and background TAC’s are not shown, as
Formiconi’s method was used to estimate these in [2]

VI. D ISCUSSION

The experimental results indicate that the COBRA
algorithm proposed is able to rapidly recover TAC’s from
temporally inconsistent dynamic SPECT datasets. In phantom
studies, the recovered parameters typically exhibit a small
bias of the order of3%, and estimator efficiency is within
30% of the Cramér-Rao lower bound on parameter variance.
When applied to a clinical myocardial SPECT study rendered
temporally inconsistent through artificial reduction of
time-resolution, the recovered curves compared favorably
with those obtained through application of the methods of
Formiconi and Reutter et al. to high temporal resolution data.

While many previous algorithms have required
access to powerful computing equipment when applied
to large multislice, multiregion studies, we have
demonstrated an algorithm which scales approximately as
O(RPQ(MN)2+(MN)3) with M � 4 rather thanM � 100
as in the spectral method of Cunningham et al. The method
of Reutter et al. is more complex, scaling approximately
as O(RPQN4 + N5 + N3) per iteration. However, for
typical large clinical datasets with few regions (RPQ large),
computation is dominated by theO(RPQN4) term and the
DSCFP and COBRA algorithms incur similar computational
cost for M � N . The computation time required for the
application of COBRA to the clinical study using a personal
computer was 35 s versus 58 s for the DSCFP algorithm.
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